ODBORNÝ ČASOPIS PRE PODNIKATEĽOV, ORGANIZÁCIE, OBCE, ŠTÁTNU SPRÁVU A OBČANOV

1. MINIMALIZÁCIA, ZHODNOCOVANIE A ZNEŠKODŇOVANIE

- FAKTORY MOTIVÁCIE OBČANOV SLOVENSKA KU TRIEDENIU KOMUNÁLNEHO ODPADU
 Michal Stričík. Monika Bačová. Monika Čonková
- SUPERZLIATINY A ICH RECYKLÁGIA Alexandra Kollová, Jarmila Trpčevská
- SPRAVODLIVÉ ODPADY: ANALÝZA VPLYVOV ZAVEDENIA MNOŽSTVOVÉHO ZBERU NA SLOVENSKU (NETECHNICKÉ ZHRNUTIE) Stella Slučiaková
- Z KOMUNÁLNEHO ODPADOVÉHO HOSPODÁRSTVA Kolektív
- JESENNÉ UPRATOVANIE V SLOVENSKÝCH MESTÁCH A OBCIACH Kolektív
- NAVRHOVANÉ OPATRENIA V RÁMCI BOJA S PLASTOVÝM ODPADOM Kolektív
- VLÁDA VYČLENÍ 50 MILIÓNOV ROČNE NA FINANCOVANIE VÝSTAVBY A REKONŠTRUKCIE VODOVODOV A KANALIZÁCIÍ Kolektív
- ENVIROREZORT FINANČNE PODPORÍ ZHODNOCOVANIE ROZLOŽITEĽNÉHO ODPADU A ENVIROFOND OCHRANU BIODIVERZITY Kolektív

2. PREDPISY, DOKUMENTY, KOMENTÁRE

- ZVYŠOVANIE POPLATKOV ZA VÝVOZ A LIKVIDÁCIU ODPADU V SLOVENSKÝCH MESTÁCH Kolektív
- VYHLÁŠKA MINISTERSTVA ŽIVOTNÉHO PROSTREDIA SLOVENSKEJ REPUBLIKY Č. 347/2019 Z.Z.
 ZO 14. OKTÓBRA 2019, KTOROU SA VYKONÁVAJÚ NIEKTORÉ USTANOVENIA ZÁKONA
 O ZÁLOHOVANÍ JEDNORAZOVÝCH OBALOV NA NÁPOJE
- RECYKLOVANÉ HLINÍKOVÉ PLECHOVKY AKO EKOLOGICKEJŠIA ALTERNATÍVA ZA PET FĽAŠE Kolektív
- EKOLOGICKÉ VYKUROVANIE DOMÁCNOSTÍ MÔŽE VÝRAZNE ZNÍŽIŤ ZNEČISŤOVANIE OVZDUŠIA Kolektív
- PROJEKT XPRESS UĽAHČÍ ZAVÁDZANIE OBNOVITEĽNÝCH ZDROJOV ENERGIE NA SLOVENSKU Kolektív
- ŠTRNÁSTY OKTÓBER MEDZINÁRODNÝ DEŇ ELEKTROODPADU Kolektív
- VÝVOJ V KAUZE VASSAL EKO NELEGÁLNA SKLÁDKA ODPADU V PODUNAJSKÝCH BISKUPICIACH Kolektív

3. SPEKTRUM

- GENETICKÉ ZNEČISTENIE NOVÁ HROZBA PRE ŽIVOTNÉ PROSTREDIE A ZDRAVIE ĽUDÍ?
 Doc. RNDr. Peter Pristaš, CSc., RNDr. Jana Kisková, PhD., RNDr. Lenka Maliničová, PhD., Bc. Adam Juhás,
- LAUREÁTOM SÚŤAŽE ENVIROMESTO 2019 SA STAL KEŽMAROK Kolektív
- ENVIRO SÚŤAŽE, AKCIE A PROJEKTY PRE DETÍ A MLÁDEŽ Kolektív

Bc. Soňa Galušková. Prof. RNDr. Jana Sedláková - Kaduková. PhD...

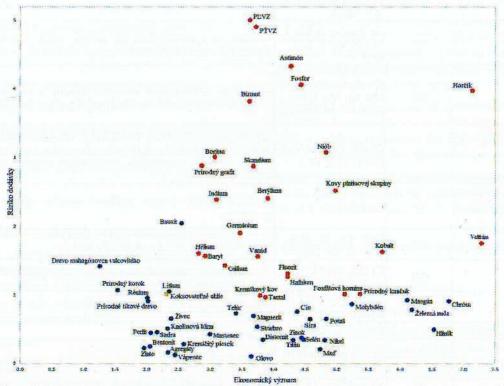
- ROZVOJ BICKESHARINGU A E-MOTOSHARINGU Kolektív
- BARABÁŠOV TIEŇ JAGUÁRA ZBIERA CENY NA EKOLOGICKY ZAMERANÝCH FILMOVÝCH FESTIVALOCH Kolektív
- KARPATSKÉ BUKOVÉ PRALESY DOSTALI JASNÉ A REÁLNE HRANICE
 Kolektív
- ZAUJÍMAVOSTI ZO ZAHRANIČIA Kolektív

OBSAH

1. M	IINIMALIZACIA, ZHODNOCOVANIE A ZNESKODNOVANIE	
•	FAKTORY MOTIVÁCIE OBČANOV SLOVENSKA KU TRIEDENIU KOMUNÁLNEHO ODPADU	5
	Michal Stričík, Monika Bačová, Monika Čonková SUPERZLIATINY A ICH RECYKLÁCIA	13
	Alexandra Kollová, Jarmila Trpčevská	
٠	SPRAVODLIVÉ ODPADY: ANALÝZA VPLYVOV ZAVEDENIA MNOŽSTVOVÉHO ZBERU NA SLOVENSKU (NETECHNICKÉ ZHRNUTIE)	17
	Stella Slučiaková	
•		19
	Kolektív JESENNÉ UPRATOVANIE V SLOVENSKÝCH MESTÁCH A OBCIACH	04
30	Kolektív	
	NAVRHOVANÉ OPATRENIA V RÁMCI BOJA S PLASTOVÝM ODPADOM	23
	Kolektív	
•	VLÁDA VYČLENÍ 50 MILIÓNOV ROČNE NA FINANCOVANIE VÝSTAVBY A REKONŠTRUKCIE VODOVODOV A KANALIZÁCIÍ	24
	Kolektív	
٠	ENVIROREZORT FINANČNE PODPORÍ ZHODNOCOVANIE ROZLOŽITEĽNÉHO ODPADU A ENVIROFOND OCHRANU BIODIVERZITY	25
	Kolektív	
2. P	REDPISY, DOKUMENTY, KOMENTÁRE	
	ZVYŠOVANIE POPLATKOV ZA VÝVOZ A LIKVIDÁCIU ODPADU V SLOVENSKÝCH MESTÁCH	26
\$.●	Kolektív	20
•	ELEKTRICKÝ POHON DOSTÁVA POSTUPNE ZELENÚ: POROVNANIE FINANČNÝCH NÁKLADOV NÁKUPU A PREVÁDZKY ELEKTROMOBILOV S AUTAMI NA KONVENČNÝ POHON	28
	Martin Haluš, Marek Engel	
	ZO 14. OKTÓBRA 2019, KTOROU SA VYKONÁVAJÚ NIEKTORÉ USTANOVENIA ZÁKONA O ZÁLOHOVANÍ JEDNORAZOVÝCH OBALOV NA NÁPOJE	32
	Kolektív	
٠	RECYKLOVANÉ HLINÍKOVÉ PLECHOVKY AKO EKOLOGICKEJŠIA ALTERNATÍVA ZA PET FĽAŠE	33
	EKOLOGICKÉ VYKUROVANIE DOMÁCNOSTÍ MÔŽE VÝRAZNE ZNÍŽIŤ ZNEČISŤOVANIE OVZDUŠIA Kolektív	34
20	PROJEKT XPRESS UĽAHČÍ ZAVÁDZANIE OBNOVITEĽNÝCH ZDROJOV ENERGIE NA SLOVENSKU	35
	Kolektív	
•	ŠTRNÁSTY OKTÓBER – MEDZINÁRODNÝ DEŇ ELEKTROODPADU	35
	Kolektív	
	VÝVOJ V KAUZE VASSAL EKO – NELEGÁLNA SKLÁDKA ODPADU V PODUNAJSKÝCH BISKUPICIACH	36
	Kolektív	
3. S	PEKTRUM	
	GENETICKÉ ZNEČISTENIE – NOVÁ HROZBA PRE ŽIVOTNÉ PROSTREDIE A ZDRAVIE ĽUDÍ?	37
	Doc. RNDr. Peter Pristaš, CSc., RNDr. Jana Kisková, PhD., RNDr. Lenka Maliničová, PhD., Bc. Adam Juhás,	S.
	Bc. Soňa Galušková, Prof. RNDr. Jana Sedláková-Kaduková, PhDPhD	
•	LAUREÁTOM SÚŤAŽE ENVIROMESTO 2019 SA STAL KEŽMAROK	41
	Kolektív	
120	ENVIRO SÚŤAŽE, AKCIE A PROJEKTY PRE DETI A MLÁDEŽ	42
	Kolektív	32.52
N•	ROZVOJ BICKESHARINGU A E-MOTOSHARINGUKolektív	44
•	BARABÁŠOV TIEŇ JAGUÁRA ZBIERA CENY NA EKOLOGICKY ZAMERANÝCH FILMOVÝCH	7/20024
	FESTIVALOCHKolektív	46
1000		46
•	Kolektív	
•	ZAUJÍMAVOSTI ZO ZAHRANIČIA	47
	Kolektív	

Alexandra Kollová, Jarmila Trpčevská

SUPERZLIATINY A ICH RECYKLÁCIA


ÚVOD

Superzliatiny predstavujú skupinu komplexne legovaných vytvrditeľných zliatin so všestranným využitím [1]. Vyznačujú sa vysokou pevnosťou a vynikajúcou stabilitou povrchu aj pri zvýšených teplotách nad 650 °C [1]. Vďaka týmto vlastnostiam sú vhodné na výrobu vysokoteplotných zariadení, ako sú napr. letecké turbínové motory či spaľovacie turbíny [2].

Účinnosť takýchto zariadení rastie so zvyšujúcou sa teplotou spaľovania a súčasne aj prevádzkového tlaku [3]. Okrem

energetiky a leteckého priemyslu nachádzajú využitie aj v odvetviach, ako medicína, chemický, petrochemický a automobilový priemysel [4][5][6]. Oblasť použitia, ako aj vlastnosti superzliatin záležia od chemického zloženia. Tieto zliatiny obsahujú aj prvky, ktorých cena je vysoká a patria do Zoznamu kritických surovín pre Európsku úniu [7]. To je jeden z hlavných dôvodov, prečo je recyklácia superzliatin dôležitá.

Postavenie kritických surovin (znázomených červenou farbou) ako grafickú závislosť rizika dodávky od ekonomického významu zobrazuje obr. 1.

Obr. 1: Grafická závislosť rizika dodávky od ekonomického významu [7]

Celková produkcia superzliatin v roku 2008 bola približne 55 000 ton [8]. Hodnota globálneho trhu so superzliatinami v roku 2016 bola odhadnutá na 3731 miliónov EUR a v roku 2023 pravdepodobne dosiahne hodnotu 6889 miliónov EUR [4]. Superzliatiny patria k drahším materiálom, ich cena sa pohybuje v rozmedzí 17 – 25,5 EUR/kg [9].

1. CHARAKTERIZÁCIA SUPERZLIATIN

Termín "superzliatina" sa začal používať krátko po druhej svetovej vojne na opis skupiny zliatin určených na použitie v turbodúchadlách a leteckých turbínových motoroch, kde sa vyžadoval vysoký výkon pri zvýšených teplotách [2]. Okrem toho sa hodia aj ako konštrukčné materiály pre najvyššie tepelno-pevnostné podmienky [1].

Základ superzliatin tvoria prvky VIII.B skupiny [2]. Superzliatiny väčšinou pozostávajú z rôznych kombinácií chrómu, kobaltu, železa a niklu s prídavkom menšieho množstva hliníka, molybdénu, nióbu, tantalu, titánu a volfrámu [2].

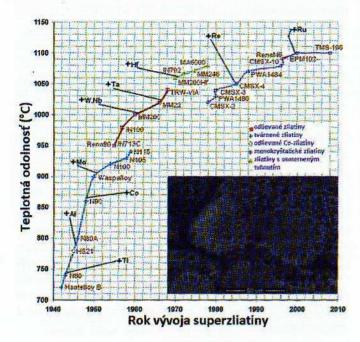
Tab. 1: Vybrané superzliatiny, ich zloženie a hlavné použitie [2]

2. ROZDELENIE SUPERZLIATIN

Superzliatiny sa rozdeľujú podľa hlavného prvku na 3 základné skupiny:

- superzliatiny na báze niklu,
- superzliatiny na báze kobaltu,
- · superzliatiny na báze železa [2].

3. SUPERZLIATINY NA BÁZE NIKLU


Niklové superzliatiny sú spomedzi uvedených druhov najpoužívanejšie [4]. Pre mnohých metalurgov sú najzaujímavejšie zo všetkých superzliatin [10]. V tab. 1 sú uvedené obchodné názvy, chemické zloženie a použitie vybraných superzliatin na báze niklu.

Zvyčajné zloženie niklových superzliatin je nasledovné: 10 – 20 % Cr, do 8 % Al a Ti, 5 – 10 % Co a malé množstvo B, Zr a C [6]. Hlavné legujúce prísady v niklových superzliatinách sú teda chróm, hliník, titán, kobalt, molybdén a volfrám.

Názov superzliatiny	Podiel niklu (hm. %)	Podiel ostatných prvkov (hm. %)	Použitie
Astroloy (prášok)	55	Cr 15, Co 17, Mo 5, Al 4, Ti 4, Zr 4	Vysokotlakové turbínové disky a držiaky lopatiek.
CMSX2-10 (monokryštalové zliatiny)	67	Cr 8, Co 5, Mo 1, Al 6, Ti 1, W 8, Ta 6	Lopatky turbín.
FT750DC	67	Cr 20, Al 2, Ti 2, W 4, B stopové množstvo	Odolné voči tečeniu, aplikácie elektrární.
Inconel 718	53	Cr 19, Co 1, Mo 3, Ti 1, Nb 4	Prúdové motory, plynové turbíny.
Hastelloy G-50	50	Cr 20, Co 3, Cu 1, Mo 9, Mn 1, Si 1, W 1	Používa sa v aplikáciách pri výrobe oleja. Odoláva prirodzenej korózii pôsobením kyslého plynu.
Hastelloy S	62	Cr 16, Co 2, Mo 15, Mn 1, W stopové množstvo	Rozšírené využitie ako tesniace krúžky v plynových turbínach. Jeho nízky koeficient tepelnej rozťažnosti je tiež dôležitý.
Hastelloy X	47	Cr 22, Co 2, Mo 9, Mn 1, Si 1, W 1	Aplikácie: v peci (valce, zásobníky), výfukové potrubie tryskového motora, komponenty dodatočných spalín, lopatky turbín, lopatky trysiek, kabíny ohrievačov, spaľovacie komory plynových turbín a potrubia.
Inconel MA758 (posilnená oxidová disperzia)	77	Cr 20, Y ₂ O ₃ 1	Používa sa na mnoho aplikácií vysoko výkonných tepelných procesov.
Mar-M200	60	Cr 9, Co 10, Al 5, Ti 2, W 12, Nb 1	Monokryštálové turbínové profily krídel.
Waspaloy	58	Cr 20, Co 14, Mo 4, Al 1, Ti 3	Používa sa pri mnohých komponentoch rotačných a neotáčavých turbínových motoroch.
Udimet 500	54	Cr 18, Co 19, Mo 4, Al 3, Ti 3	Lopatky turbín.
Nimonic 80	76	Cr 20, Al 1, Ti 2	Lopatky turbín.
Rene 41	55	Cr 19, Co 11, Mo 10, Al 2, Ti 3	Prúdové motory.
TMS 63	71	Cr 7, Mo 7, Al 6, Ta 8	Monokryštálové lopatky turbín.

Vývoj superzliatin trval niekoľko rokov, pokiaľ sa získali materiály s vlastnosťami dnešných superzliatin [11].

Teplotná odolnosť rôznych superzliatin v závislosti od ich časového vývoja v období 1940 až 2010 je znázornená na obr. 2.

Obr. 2: Grafická závislosť teplotnej odolnosti od roku vývoja superzliatin [11]

Niklové superzliatiny sa podľa použitia rozdeľujú do dvoch veľkých skupín, a to na:

- · antikorózne niklové superzliatiny,
- · žiaruvzdorné a žiarupevné superzliatiny niklu [12].

Antikorózne niklové superzliatiny sa využívajú, keď iné materiály:

- nevyhovujú svojimí mechanickými vlastnosťami,
- · majú mimoriadne vysokú cenu,
- nemajú dostatočne vysokú odolnosť voči korózii [1].

Žiaruvzdorné a žiarupevné superzliatiny často nahrádzajú žiarupevné ocele. Používajú sa pri teplotách nad 750 °C [1].

4. RECYKLÁCIA SUPERZLIATIN NA BÁZE NIKLU

Superzliatiny sú charakteristické komplexom chemických a fyzikálnych vlastností, preto je ich recyklácia zložitá. Používa sa niekoľko unikátnych recyklačných procesov, avšak o danej problematike nie je veľa informácií. Vo všeobecnosti možno recyklačné procesy možno rozdeliť na:

- · pyrometalurgické,
- hydrometalurgické,
- kombinované pyro a hydrometalurgické [11][13].

Moderné superzliatiny niklu obsahujú 3 až 6 % vzácnych prvkov ako rénium a ruténium [11]. Cena rénia ku dňu 19. 9. 2019 bola 2575,20 EUR/kg a ruténia 230,89 EUR/OZ [14]. Napriek relatívne nízkemu hmotnostnému podielu majú tieto dva kovy najvyšší podiel na cene [13].

Pred samotnou recykláciou je vhodné najprv určiť chemické zloženie superzliatiny, napr. pomocou XRF spektrometra. Následne by sa šrot (odpad zo superzliatin) mal roztriediť na základe chemického zloženia zvlášť s ohľadom na obsah rénia. Šrot bez obsahu rénia (staršie superzliatiny) je vhodnejšie spracovať pyrometalurgickými metódami, avšak superzliatiny s obsahom rénia 3 – 6 hm. % (modernejšie superzliatiny) sa oplatí recyklovať hydrometalurgicky [15].

V súčasnosti je najpoužívanejším prístupom pretavenie kovových zložiek s primiešaním primámych surovín. Medzi pyrometalurgické postupy patrí napr. pretavenie šrotu v elektrickej oblúkovej peci s nasledovnou vákuovou rafináciou vzniknutého ingotu.

Týmto postupom sa získali ingoty s 93 % obsahom nezoxidovaných kovov . Pre minimalizáciu straty odparovaním bol použitý vápenec a fluorit [11].

Výhodami pyrometalurgických postupov sú:

- jednoduchšia operácia,
- získaný produkt s dobrými mechanickými vlastnosťami [11].

Nevýhodami pyrometalurgických postupov sú:

- · strata prvkov do trosky/odparením,
- · vysoká spotreba energie [11].

Hydrometalurgické procesy sa zatiaľ študujú v laboratórnom rozsahu. Ich cieľom je získať zlúčeniny a/alebo čisté kovy.

Študované bolo napr. dvojstupňové lúhovanie niklu a rénia z niklovej superzliatiny PWA 1484 roztokmi HCl. Tavením s Al-granulátom sa získala tavenina, ktorá sa ochladila vzduchom a po stuhnutí sa zliatina rozdrobila. Nikel tvorí s hliníkom intermetalické fázy, ktoré sú ľahko drviteľné.

Prvý stupeň lúhovania prebiehal v elektrochemickom článku, ktorý bol aniónovou výmennou membránou rozdelený na katódové a anódové oddelenie. Do roztoku sa dostali kovy ako Ni, Co, Cr a Al, pričom Re ostalo v tuhom zvyšku.

V sklenenom lúhovacom reaktore prebiehal druhý stupeň lúhovania, pričom sa elektricky vygenerovaný chlór z prvého lúhovania použil ako oxidovadlo. Zo zvyšku sa lúhovalo Re [11] [13].

Výhodami hydrometalurgických postupov sú:

- · selektivita,
- produkt vysokej čistoty,
- · menšia spotreba energie [11].

Nevýhodami hydrometalurgických postupov sú:

- · požiadavka lúhovacích činidiel,
- · korozívne prostredie odolnejšie zariadenia,
- náročná separácia fáz [11].

Ťažkosti premeniť všetky kovové zložky zo superzliatinového šrotu na konečný produkt s pridanou hodnotou hydrometalurgickou cestou podnietili niekoľko výskumov na skúmanie kombinovaných pyro-hydrometalurgických postupov. Ich cieľom je umožniť lúhovanie kovových zložiek, prípadne zväčšiť povrchovú plochu [11].

Patentovaný bol napr. proces, ktorého prvým krokom bol vysokoteplotný rozklad v tavenine soli obsahujúcej 60 – 95 hm. % NaOH, 5 – 40 hm. % Na₂SO₄ a prídavné oxidujúce činidlo (NaNO₃ alebo K₂S₂O₈). Proces prebieha v rotačnej peci, do taveniny sa vháňa kyslíkom obohatený vzduch.

Druhým krokom je ochladenie taveniny, drvenie a mletie. Materiál sa následne lúhuje za použitia vody ako lúhovacieho činidla. Rozpustia sa prvky šiestej a siedmej skupiny.

Vzniknutá kašovitá zmes sa ďalej prefiltruje, aby sa oddelili nerozpustné kovy ako Fe, Ni, Co, Cr a Mn od výluhu. Na nerozpustný zvyšok sa aplikuje magnetická separácia a filtrát postupuje na iónovú výmenu. Získa sa roztok s obsahom Re a Ta [16][17].

Výhodami kombinovaných pyro-hydrometalurgických postupov sú:

- · drobivý kamienok,
- · efektivita lúhovania,
- produkt vysokej čistoty [11].

Nevýhodami kombinovaných pyro-hydrometalurgických postupov sú:

- · vysoká spotreba energie,
- · strata prvkov,
- požiadavka vysokého pH a teploty [11].

4.1 SPOLOČNOSTI RECYKLUJÚCE ŠROT ZO SUPERZLIATIN

Ako príklady spoločností recyklujúcich superzliatinový šrot možno uviesť:

· GREYSTONE ALLOYS, Houston, USA

Táto spoločnosť recykluje šrot z týchto kovov a zliatin: Inconel 625, Inconel 718, Hastelloy C, sprejové prášky, tantalový šrot, šrot zo superzliatiny Haynes, molybdénový šrot, šrot z Monelov, šrot z oceľového náradia, zirkónový šrot [18].

Monico Alloys, Rancho Dominiques (blízko Los Angeles), USA

Okrem vysokočistých kovov ponúka recykláciu a predaj recyklovaného šrotu zo superzliatin, napr. Hastelloy, Haynes, Inconel, Monel, Rene, Waspaloy [19].

 Umicore (celosvetové zastúpenie v rafinériách v Belgicku, USA, Filipínach a Číne)

Poskytuje environmentálne zodpovedné a komerčne atraktívne metódy recyklácie šrotu a zvyškov obsahujúcich kobalt, nikel - rénium a tantal. Okrem iných druhov kovových odpadov sa tu recykluje superzliatinový šrot z leteckého priemyslu [20].

 United Alloys And Metals; Los Angeles, Kalifornia a Columbus, Ohio

Je jedným z popredných svetových spracovateľov titanového šrotu a superliatinového šrotu. Ako divízia rodiny Cronimet je UAM súčasťou jednej z najväčších svetových spoločností na recykláciu kovov [21].

ZÁVER

Superzliatiny sa podľa hlavného prvku rozdeľujú na superzliatiny na báze niklu, kobaltu a železa. Niklové superzliatiny sú z uvedených skupín najpoužívanejšie. Okrem niklu tieto zliatiny obsahujú rôzne legúry, najmä chróm, kobalt, hliník, titán, volfrám, niób a molybdén. Moderné superzliatiny sa vyznačujú 3 – 6 %-ným obsahom ruténia a rénia.

Odpad zo superzliatin teda predstavuje komplexný zdroj rôznych prvkov. V praxi sa na recykláciu superzliatinového šrotu v súčasnosti aplikujú pyrometalurgické spôsoby.

Hydrometalurgické a kombinované pyro-hydrometalurgické metódy sa zatiaľ študujú v laboratórnom meradle. V budúcnosti by mohli mať potenciál z hľadiska získavania jednotlivých prvkov, resp. ich zlúčenín, avšak potrebujú rozšírenie na dosiahnutie cenovej efektívnosti v priemyselnom rozsahu a účinnosť rozpustenia kovov musí dosiahnuť technologicky a ekonomicky prípustnú úroveň.

Poďakovanie:

Táto práca vznikla v rámci riešenia grantu VEGA MŠ SR 1/0442/17 a za jeho finančnej podpory.

Literatúra:

- [1] TRPČEVSKÁ, Jarmila. Rafinácia a príprava zliatin. Košice: TU, 2017.
- [2] GOONAN, T. G. Nickel Recycling in the United States in 2004 [online]. U.S. GEOLOGICAL SURVEY CIR-CULAR 1196–Z, 20. 4. 2009, Version 1.1, 21-22 [cit. 2018-11-6]. Dostupné z: https://pubs.usgs.gov/circ/ circ1196-Z/pdf/circ1196-Z_v1-1.pdf
- [3] CHACHAĽÁK, Michal. Fyzika kovov I. Bratislava: Alfa, 1980. ISBN 63 700 80.
- [4] Superalloys Market by Base Material (Nickel-Based, Iron-Based, and Cobalt-Base) and Application (Aerospace, Industrial Gas Turbine, Automotive, Oil & Gas, Industrial, and Others) - Global Opportunity Analysis and Industry Forecast, 2017-2023: Superalloys Market Overview. Www.alliedmarketresearch.com [online]. [cit. 2019-05-23]. Dostupné z: https://www. alliedmarketresearch.com/superalloys-market
- [5] Superzliatiny na báze niklu. Matnet.sav [online]. [cit. 2018-10-21]. Dostupné z: http://www.matnet.sav.sk/ index.php?ID=1104
- [6] SUPERALLOYS. Www.slideshare.net [online]. [cit. 2018-12-08]. Dostupné z: https://www.slideshare.net/N.Prakasan/superalloys-22683088

- [7] Third list of critical raw materials for the EU of 2017. In: Europa.eu [online]. [cit. 2019-12-16]. Dostupné z: http://ec.europa.eu/growth/sectors/raw-materials/ specific-interest/critical_en
- [8] SUPERALLOYS, THE MOST SUCCESSFUL AL-LOY SYSTEM OF MODERN TIMES - PAST, PRE-SENT AND FUTURE [online]. TMS, 2010 [cit. 2018-12-01]. Dostupné z: https://www.tms.org/superalloys/10.7449/2010/Superalloys_2010_13_50.pdf
- [9] Superzliatiny na báze niklu: Vlastnosti. Matnet.sav [online]. [cit. 2018-10-21]. Dostupné z: http://www. matnet.sav.sk/data/files/1019.pdf
- [10] AKCA, Enes a Ali GURSEL. A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy. PERIODICALS OF ENGINEERING AND NATURAL SCIENCES [online]. 2015, 3(No. 1) [cit. 2019-05-02], DOI: 10.21533/pen.v3i1.43. ISSN 2303-4521. Dostupné z: https://www.researchgate.net/publication/296013959_A_Review_on_Superalloys_and_IN718_Nickel-Based_INCONEL_Superalloy
- [11] SRIVASTAVA, Rajiv Ranjan, Min-seuk KIM, Jae-chun LEE, Manis Kumar JHA a Byung-Su KIM. Resource recycling of superalloys and hydrometallurgical challenges [online]. Springer Science+Business Media New York, 2014, 22 April 2014 [cit. 2019-03-26]. Dostupné z: https://www.researchgate.net/profile/Manis_Jha/publication/262572757_Resource_recycling_of_superalloys_and_hydrometallurgical_challenges/links/598ee149a6fdcc10d8ff43ec/Resource-recycling-of-superalloys-and-hydrometallurgical-challenges.pdf
- [12] Vysokopevné a vysokolegované oceli, superslitiny. Ústav materiálového inženýrství: Fakulta strojní [online]. [cit. 2018-10-21]. Dostupné z: http://umi.fs.cvut.cz/wp-content/uploads/2014/10/01_pm_vyskopevne_a_vysokolegovane_oceli_a_slitiny_ni_a_co.pdf
- [13] KIM, Min-Seuk, Jae-Chun LEE, Hyun-Sik PARK a Byung-Su KIM. A multistep leaching of nickel-based

- superalloy scrap for selective dissolution of its constituent metals in hydrochloric acid solutions. ELSE-VIER: Hydrometallurgy [online]. 05 February 2018 [cit. 2019-03-26].
- [14] Live PGM Prices Price of Iridium, Rhodium, Rhenium & Osmium. Metalsdaily.com [online]. [cit. 2019-09-19]. Dostupné z: https://www.metalsdaily.com/live--prices/pgms/
- [15] Superzliatiny a ich recyklácia. Košice, 2019. Bakalárska práca. Technická univerzita v Košiciach. Vedoucí práce Doc. Ing. Jarmila Trpčevská, CSc.
- [16] KURYLAK, Witold et al. State of the art on the recovery of refractory metals from urban mines. MSP-REFRAM [online]. 2016-05-10 [cit. 2019-05-24]. Dostupné z: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a-8dabbed&appld=PPGMS
- [17] KURYLAK, Witold. Innovation potential in the recovery of refractory metals from urban mines. MSP-REFRAM [online]. 2016-09-03 [cit. 2019-05-24]. Dostupné z: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e-5ac904b9f&appld=PPGMS
- [18] ALLOYS WE RECYCLE. Http://www.greystonealloys. com [online]. [cit. 2019-05-12]. Dostupné z: http:// www.greystonealloys.com/alloys-we-recycle/
- [19] Monico Alloys High Temperature Scrap Alloy Specialists. Www.monicoalloys.com [online]. [cit. 2019-05-13]. Dostupné z: https://www.monicoalloys.com/ index.php
- [20] Recycling & Refining. Https://umicore.com [online]. [cit. 2019-09-25]. Dostupné z: https://csm.umicore.com/en/applications/recycling-and-refining/
- [21] United Alloys And Metals Titanium Scrap Processors: Leading processors of titanium scrap and super alloy scrap. Stainless steel processing is also available. Uametals.com [online]. [cit. 2019-09-25]. Dostupné z: https://uametals.com/