

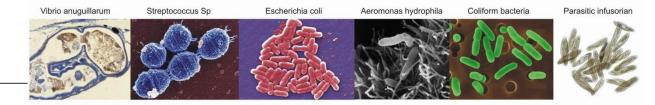
This project received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement n° 730471

This presentation reflects only the author's views and neither Agency nor the Commission are responsible for any use that may be made of the information contained herein

Use of ozone in leaching of metals

Andrea Miskufova, Tomas Havlik et al.

Institute of Recycling Technologies FMMR TUKE


TOP 2019, Hotel Panoráma, Štrbské Pleso, 15-17.5.2019

Content

- Ozone applications
- Ozone in metallurgy and recycling...?
- Vanadium industrial importance slags
- Practical example
 - Industrial waste processing: V leaching from slags (project Chromic)
- Challenges and conclusion

High redox potential (+2,07 V)

Oxidize everything except glass, PTFE, stainless steel

Most effective at room temperature and lower

□Use: bleaching, waste waters purification, dentistry, cosmetics, disinfection □Destruction: phenols, chlorinated organics, PCBs

 Prospective in ore treatment, hydrometallurgy and recycling due to its strong oxidation potential

Pilot tests: Gold mine, Xylem Water Solutions Pre- treatment by ozone; increased extraction from 53 to 85 % Au Cyanide destruction $CN^{-} + O_3 \rightarrow CNO^{-} + O_2$ (170 gO₃/m³) Deduction (170 gO₃/m³)

□ Reduction 99% CN, effluent output ---- 0.083 mg/l

Important and critical metals

V – iron and steel metallurgy, human

Vanadis – Norse gooddes of beauty

V – acts as insulin (diabetes, cholesterol, heart disease, preventing cancer...

(red meat, fish, bean, apple, pear, plum, cabbage, garlic, blackberry, carrot, milk)

Vanadium

CRM list of 27 raw materials in EU (2017) **SET plan** ("Strategic Energy Technology Plan") – support for development of low carbon technologies - 14 metals (Te, In, Sn, Hf, Ag, Dy, Ga, Nd, Cd, Ni, Mo, V, Nb, Se)

Vanadium – strategic metal for energy technology

Vanadium redox/flow batteries

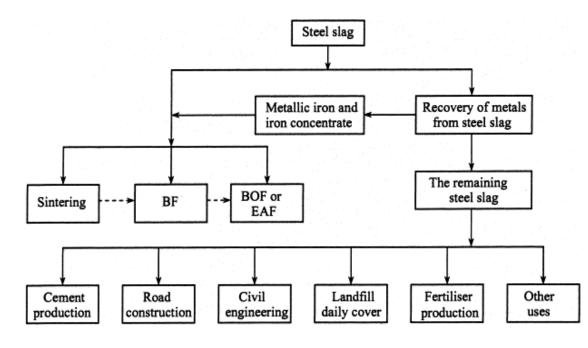
EU transition to a low carbon, resource efficiency ad circular economy Importance of Recycling

V world production: 80 000 t/y

EU consumption: 12 000 t/y (no production)

more than 90 % need in metallurgy (steel)

http://renewableenergydev.com/energy-storage-vanadium-redox-flow-batteries/ www.chromic.eu http://www.manmonthlv.com.au/news/australiasvanadium-redox-flow-battery-market-set-growth/



2017 CRMs (27)							
Antimony	Fluorspar	LREEs	Phosphorus				
Baryte	Gallium	Magnesium	Scandium				
Beryllium	Germanium	Natural graphite	Silicon metal				
Bismuth	Hafnium	Natural rubber	Tantalum				
Borate	Helium	Niobium	Tungsten				
Cobalt	HREEs	PGMs	Vanadium				
Coking coal	Indium	Phosphate rock					

Slag composition and utilization

- EAF slag (29 % of total slag generated), BOF slag (46%): majority of iron oxides
- Stainless steel, FeCr slags: low or no iron oxide, Ca, Si, Al, Mg
- Variety of metal content in alloyed steel and ferroalloys production
 - Cr, V, Ni, Mo, Nb, (Ti, Cu, Zn, REE...
- Vanadium up to 6 % in high alloyed steel slags

https://www.nzsteel.co.nz/products/aggregates/

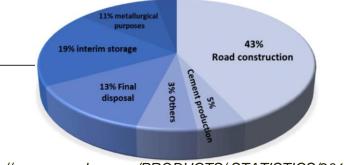
Slag composition

Type of slag	SiO ₂	Cr ₂ O ₃	Al ₂ O ₃	CaO	MgO	FeO	Fe ₂ O ₃	Fe	V	Mn	Ti	Source
BOF	9-18	n	0,9-2,8	34-55	2,5-10	n	n	14-30	0,1-3	0,93-6,2	n	[15]
	9,31	0,20	2,20	41,59	8,93	22,4	n	n	0,5-1,22	2,7	1,092	[16]
LD	12-12,6	n	1,22-1,58	47,88-50,0	0,82-1,5	26,3-27,89	1,43-2,79	n	n	0,21	0,1-1,86	[10, 17]
	8,52	n	1,27	41,86	11,15	25,22	n	n	0,84-1,4	3,19	n	[18]
	17,6	0,56	0,52	23,8	5,85	n	n	17,3	1,65	7,1	2,50	[19]
EAF (carbon	31,7	4,7	4.6	47.4	7.0	1,2	n	n	n	n	n	[10]
steel)	25,6	2,00	10,6	31,6	11,9	14,5	n	n	0,028	2,43	0,48	[20]
EAF (high-	8,39	n	1	53,74	n	n	20,95	n	0,27-0,948	7,0	0,76	[21]
alloy steel)	17,6	0,56	0,52	23,8	5,85	n	n	17,3	5,88	7,1	2,50	[12]
Stainless	29,3-34,3	1,8-8,8	2,9-7,8	47,3-51,0	4,9-10,8	0,5-2,1	n	n	n	0,54-2,04	0,36-0,42	[22]
steel	26,5-33,5	2,39-2,84	1,65-10,07	43,27- 54,1	3,65-8,59	n	1,36-1,43	n	n	n	0,13-0,74	[23]
	29,36-40	3,67-4,00	4,13-4,5	36,7-46,6	4,59-5,00	0-9	6,13-6,5	n	n	n	n	[24]
	26,3-31,2	5,51-9,5	1,66-9,7	45,5-47,6	3,65-7,3	n	n	1,75-7,4	n	n	0,13-0,68	[15]
Ferrochrome	1	5	12	36	24	n	11	n	n	n	n	[15]
	26-30	14-16	22-24	2-3	24-26	2-4	n	n	n	n	n	[11]
	25-28	10-17	15-21	n	21-24	2-6	n	n	n	n	n	[25]
	42,10	6,04	5,86	0,95	10,30	3,98	n	n	n	0,26-0,5	0,08	[26]
	25-30	10-15	16-22	3-5	22-25	2-5	n	n	n	n	n	[27]
AOD slag	24,67	0,51	1,07	55,9	5,85	1,15	n	n	0,008	n	0,41	[14]

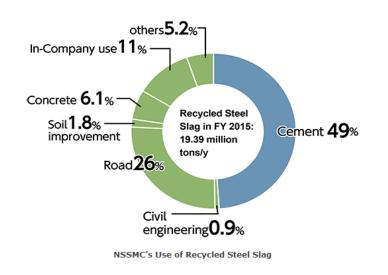
n – not analyzed; BOF – Basic Oxygen Furnace; EAF – Electric Arc Furnace; LD – Linz-Donawitz (Oxygen Converter); AOD – Argon Oxygen Decarburization

Recovery of metals from slags

World situation: ~ 65 % recycled, 35 % landfilled


China: 22% recycled

EU situation: some countries more than 90 % usage


13 + 19 % disposal (final + internal storage

Problems in complex utilization – some slag

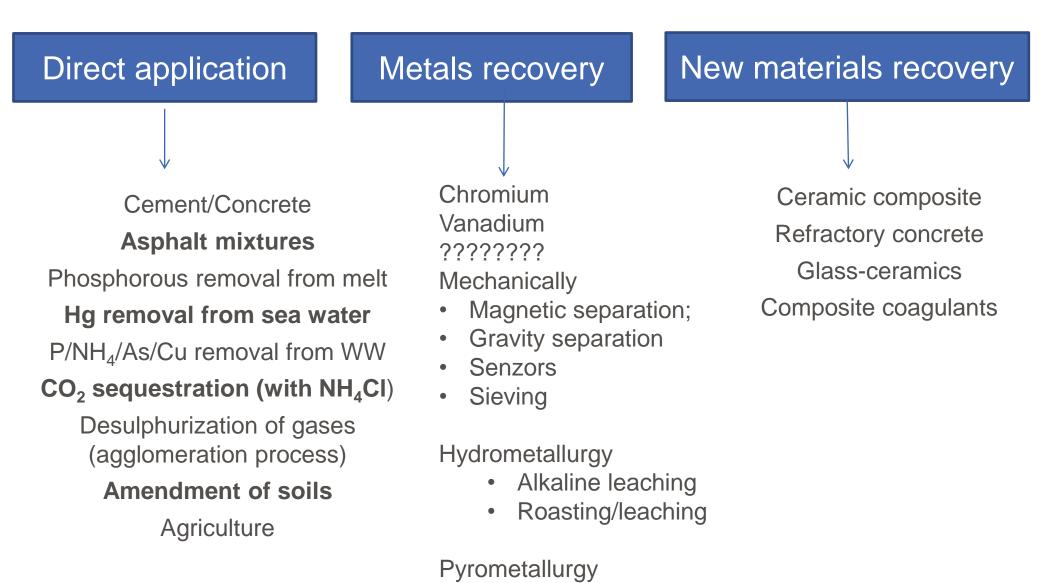
-Future application: majority for cement industry

http://www.euroslag.com/PRODUCTS/ STATISTICS/2012

- The industrial scale processes for recycling of slags (FeCr, FeV, SS, EAF...) for metals recovery - still missing

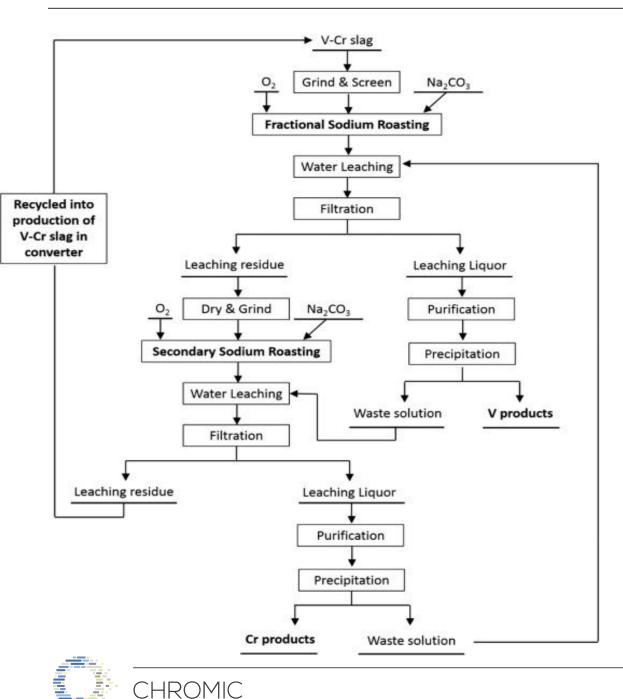
- Limitation as a construction material: due to some heavy metal content - Cr, Ni, V

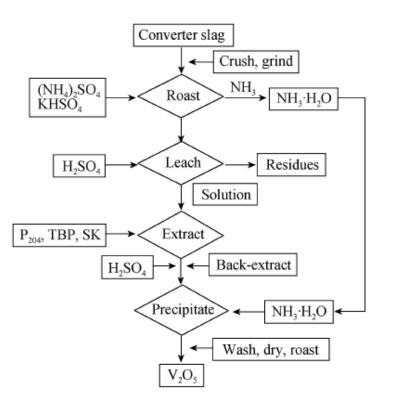
- Ecotoxicity (leachable Cr(VI), V...


CHROMIC

Slag recycling research

HROMIC


SiC


Reduction by Si, Al, C,

www.chromic.eu

Possible combined method for Cr/V recovery from slag

EXPERIMENTAL

- Ozonation leaching for possible V recovery from slags
 - Slag samples characterization (CHROMIC)
 - Ozonation leaching of slags (alkaline)
 - Focusing on Vanadium recovery

The aim

- to develop new processes for effective treatment of various industrial wastes (slags) in order to recover chromium, vanadium and other valuable metals (niobium, molybdenum).

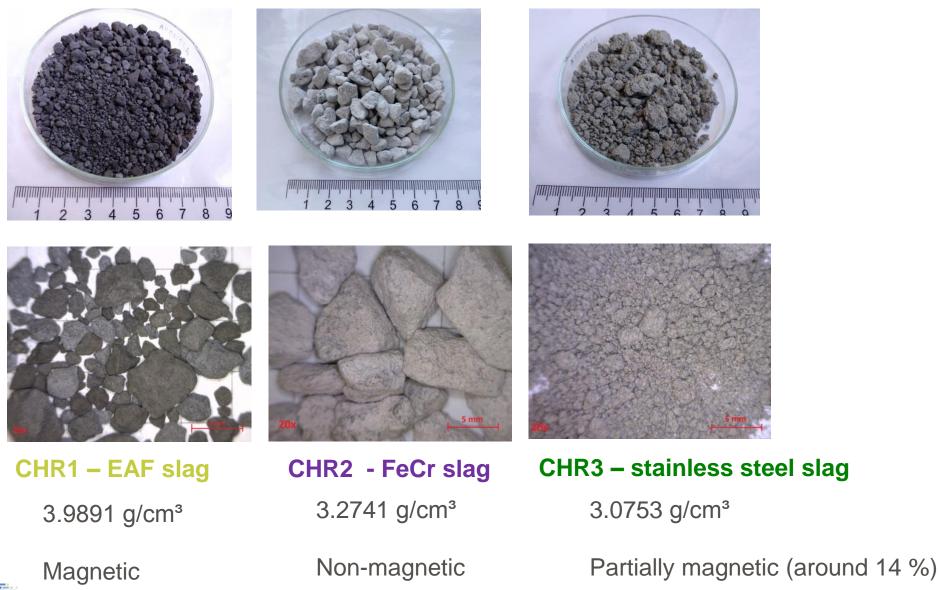
- "Releasing" Cr, V, Nb, Mo from mineral structures and slag matrix and selectively recover choosen metals
- to obtain the products, suitable as the construction materials.

Method applied: Hydrometallurgy

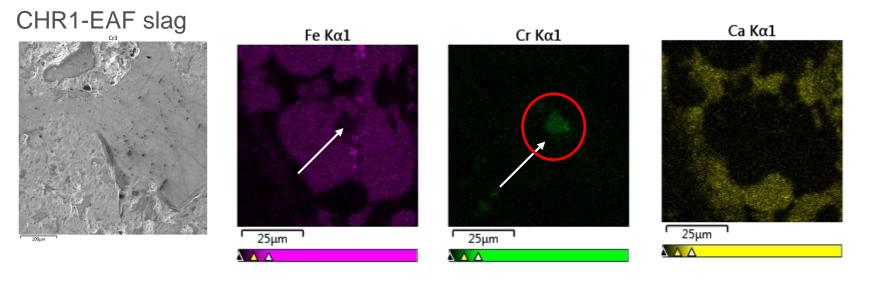
The slags used for investigation:

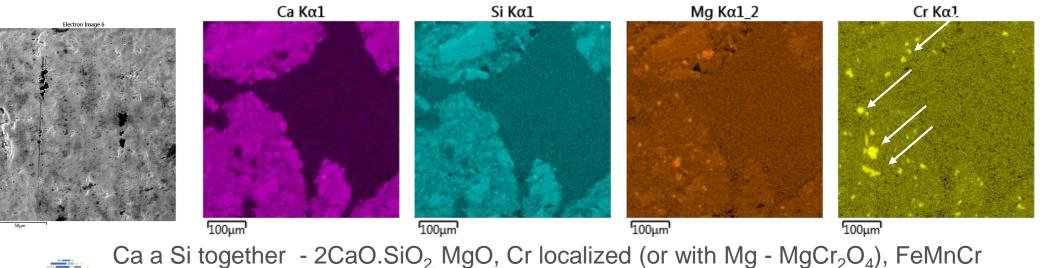
- 1. CHR1 EAF slag
- 2. CHR2 Slag from FeCr production
- 3. CHR3 Slag from stainless steel

Photo: Getty Images, http://uk.businessinsider.com



Materials and methods


Experimental samples supported by Chromic partners



Slags microstructure

SEM pictures - Isolated particles with Cr content

CHR3 – SS slag

Chemical analysis

	Cr	V	Fe	Mg	Са	ΑΙ	Si
CHR1	2.85	0.0717	31.82	1.4	17.37	4.24	4.54
CHR2	3.64	0.016	0.428	3.89	31.9	2.29	13.49
CHR3	2.22	0.0493	0.68	2.66	30.62	1.19	11.58

Mineralogical composition

EAF slag

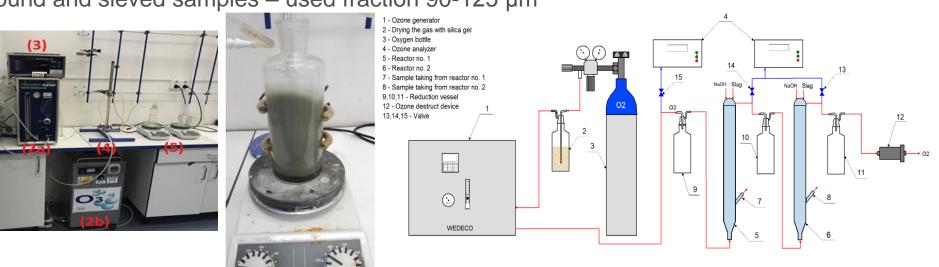
- FeO, gehlenite, Ca₂SiO₄,
- magnetite/magnesioferrite
- FeCr₂O₄ (chromite)
- CaCO₃, calcium aluminate

FeCr slag

 $\begin{array}{l} 2\text{CaO.SiO}_2, \ 3\text{CaO.SiO}_2, \\ \text{Mg componds (MgO, spinel)} \\ \text{Cr - in complex spinel} \\ (\text{magnesiochromite, spinel}) \\ \text{- CrPO}_4*6\text{H}_2\text{O}, \ \text{Ca}_2\text{FeNbO}_6 \end{array} ?$

-Ni2FeVO6?

SS slag


merwinite, 2CaO.SiO₂, gehlenite CaCO₃, Ca₄Si₂O₇F₂ (cuspidine) γ -Fe₂O₃ – maghemite CaMn(P₂O₇) Ca₄Al₆CrO₁₆, NaK₃(CrO₄)₂, doped in akermanite

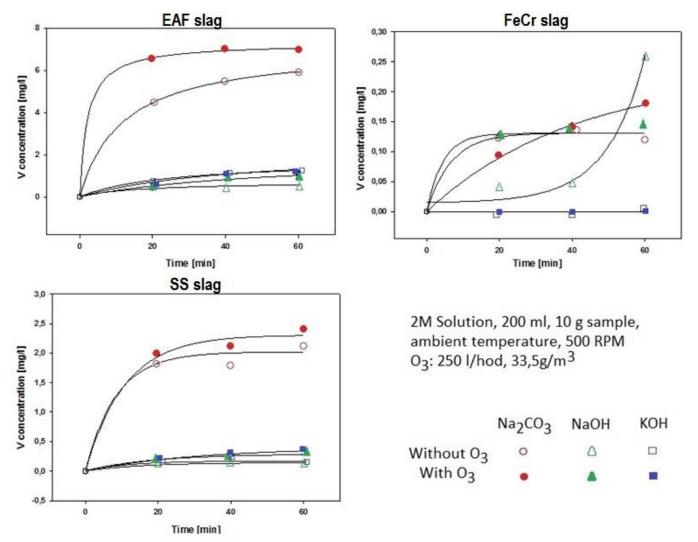
Methodics - Slags leaching

• Ground and sieved samples – used fraction 90-125 μm

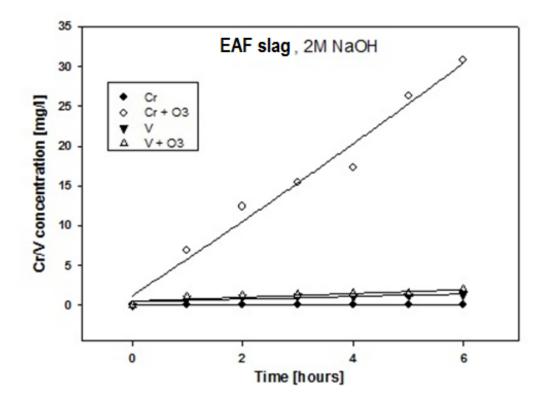
Experimental setup:

a) pilot ozonation leaching apparatus - with low ozone rates (8 g/hr); 1) pressure cylinder (O₂), 2) ozone generators3) ozone analyzer, 4) flow rate meter and 5) reaction vessel
b) New ozonation apparatus (higher ozone rates 84.2 g/hr):

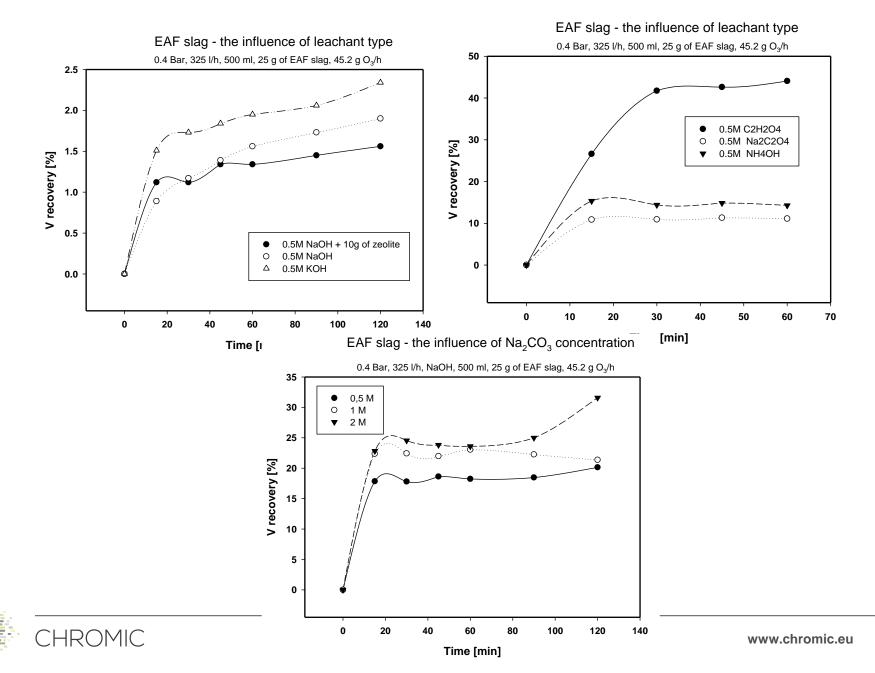
Experimental conditions:


- Old apparatus arrangement: 10 grams of slag sample leached in 200 ml of solutions
- gaseous ozone bubbled through the frit (gas flowrate 250 l/hr, 33,5 g.m³ O₃, 8 g/hr O₃)
- 2M solutions of NaOH, Na₂CO₃, KOH were used studied three slags EAF (low carbon), FeCr, stainless steel slag)
- New apparatus arrangement: 25 g of slag, 500 ml of solution (gas flowrate 325 l/hr, up to 84.2 g/hr O₃) NaOH, KOH, Na₂CO₃, NH₄OH, sodium oxalate and oxalic acid only EAF slag tested

RESULTS: Ozonation leaching of V – low ozone flow rate


Vanadium leaching – pilot tests with low ozone flow rates (up to 8 g/hr O_3) V – leached up to 18 % in ozonation leaching

Long-period ozone leaching of EAF slag (8 g/hr O₃)



RESULTS: Ozonation leaching of V – high ozone flow rate

Vanadium leaching – pilot tests with high ozone flow rates (up to 84 g/hr O_3)

Conclusions and challenges

- Some slags with higher V and other important metals suitable source of metals to be recovered
- Not yet industrially proven technology for recovery metals from slags: Cr, V, Mo, Nb
- Problems to release V (also Cr) from stable matrix
- IRT (FMMR, TUKE) testing the ozonation leaching processes for metals recovery from slags
- Laboratory testing of slag leaching
 - In NaOH, KOH media low efficiency for V leaching, FeCr and SS slags are inert
 - Ozone enhance the leaching proces of V from EAF slag in NaOH but still too low
 - Helpful: Prolongation of leaching period
 - The best leachibility of V from EAF slag in Na₂CO₃ solution at higher ozone flow rates
 - Prospective oxalic acid, too, but leaching of matrix in higher extent!
 - Other possibilities for improving the leachability of V using ozone (Cr) are still under investigation
- Potential options for improved ozonation leaching of slags:
 - Conditions of leaching (more effective solubilisation of ozone)
 - Combination of leaching agents, a proper concetration adjusting
 - Special pretreatment of samples

CHROMIC mechanical activation of slags roasting without or with additives and leaching by ozone

Thank you for your attention!

www.chromic.eu

